I understand why someone would write down the information in Plimpton 322.
-
I understand why someone would write down the information in Plimpton 322. It's too much to commit to memory and perfect right triangles are very useful.
The mystery of the list is who made it and why. My thinking would be it's from some kind of architecture/writing/math school
Everyone would know about 3,4,5 but everyone would also know that larger triples could make more accurate right angles, and they would accumulate in such a place as people tried to beat the previous record.
-
I understand why someone would write down the information in Plimpton 322. It's too much to commit to memory and perfect right triangles are very useful.
The mystery of the list is who made it and why. My thinking would be it's from some kind of architecture/writing/math school
Everyone would know about 3,4,5 but everyone would also know that larger triples could make more accurate right angles, and they would accumulate in such a place as people tried to beat the previous record.
A 9th grader can test if a pair of numbers "work" ... but coming up with new sets that aren't just multiple of previous numbers would be impressive.
And how would you know you found a new one if you didn't have a list?
Nerds! Nerds! Nerds have always existed.
-
I understand why someone would write down the information in Plimpton 322. It's too much to commit to memory and perfect right triangles are very useful.
The mystery of the list is who made it and why. My thinking would be it's from some kind of architecture/writing/math school
Everyone would know about 3,4,5 but everyone would also know that larger triples could make more accurate right angles, and they would accumulate in such a place as people tried to beat the previous record.
If you're a builder / architect with standard sized sun-baked bricks and need to get the rooms rectangular, this list is perfect...
-
F myrmepropagandist shared this topic on
-
If you're a builder / architect with standard sized sun-baked bricks and need to get the rooms rectangular, this list is perfect...
But why give a leg and the diagonal... and not two legs?
-
But why give a leg and the diagonal... and not two legs?
@futurebird @stuartyeates Fascinating to speculate. Since it works equally well either way it could easily be just a matter of local convention. With no clear advantage, leg-leg vs leg-hypotenuse could be a random choice now written in stone, er I mean clay. Or perhaps some previous technique made this the logical extension. Or maybe just as the Pythagoreans seemed to have a religious affection for right angles, the Mesopotamians had a tabu against them and this was a way of finessing around it.
-
@futurebird @stuartyeates Fascinating to speculate. Since it works equally well either way it could easily be just a matter of local convention. With no clear advantage, leg-leg vs leg-hypotenuse could be a random choice now written in stone, er I mean clay. Or perhaps some previous technique made this the logical extension. Or maybe just as the Pythagoreans seemed to have a religious affection for right angles, the Mesopotamians had a tabu against them and this was a way of finessing around it.
@lePetomaneAncien @stuartyeates
This tablet predates the pythagoreans by like 2000 years!